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Abstract

Several proposed space science missions require deployment of a number of spacecraft to
form a single functional unit or a formation flying spacecraft. There are many
applications of a formation flying spacecraft; variable baseline optical space
interferometry is one of them. These missions require frequent formation
reconfigurations where the relative spacecraft positions must be changed. Spacecrafi-to-
spacecraft separations can range from a few meters to several kilometers during such
formation reconfigurations. It is mission critical to avoid collisions between spacecraft as
they move in space. In this paper we present an optimal formation path-planning
approach which is suitable for implementation on-board, on a single spacecraft. The
optimal collision-avoidance problem is formulated as a parameter optimization problem
where the translation paths taken by each spacecraft are parameterized as high order
splines. This parameterization results in an optimization problem whose size is
proportional to the number of spacecraft in the formation. An iterative algorithm to solve
the problem on-board is proposed. Properties of optimal control are also identified.
Examples are given for representative formation reconfigurations for the cases of a two
spacecraft formation (the Space Technology-3 mission) and five spacecraft formation

(the Terrestrial Planet Finder mission).
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1. Introduction

Formation flying spacecraft refers to a set of spatially distributed spacecraft flying in
formation, capable of interacting and cooperating with one another. Several future space
science missions, €.g. the Terrestrial Planet Finder (TPF), the Terrestrial Planet Imager
(TPI), Space Technology-3 (ST-3), involve coordinated flying of several spacecraft. The
purpose of formation flying optical interferometry is to form a variable-baseline optical
space interferometer with the capability that the inter-spacecraft separations may be
varied from a few meters to several kilometers. Naturally, it is mission critical to avoid
collisions between spacecraft as they move in space, especially when they are required to
be in close proximity of one another. Mission profiles require several formation
" reconfigurations over the life of the mission. By a formation reconfiguration we mean a
change in relative spacecraft position vectors. The problem being addressed here is that
of autonomous formation reconfiguration planning subject to some optimality criteria and
collision avoidance constraints. Note that a formation reconfiguration of an N spacecraft
formation will require satisfaction of N(N-1)/2 collision avoidance constraints. For the

TPF mission, for example, N = 5.

The problem of collision avoidance between collaborative systems has been the subject
of extensive research in the field of robotics. Several published works [1-5] have
addressed the problem of robot path planning in a workspace environment. Almost all of
these have proposed solutions that make use of artificial potential functions. Application
of potential functions based methods is a very effective and powerful technique for

handling collision avoidance constraints, which has also been generalized to spacecraft

applications [7,8]. Shan and Koren [6] take an obstacle accommodation approach to the



problem. Rather than avoid physical contacts between moving objects, their approach
controls relative velocities to avoid damage from contact. Some of the formation flying
specific research [8-11] considers formation reconfiguration problem but not in the
context it is proposed in here. Specifically, the collision avoidance constraints during
formation reconfigurations have been ignored in literature published thus far. While
these methods are analytically rigorous and are also attractive from an implementation
point of view, the collision avoidance for formation flying interferometry applications
will need to satisfy additional and more stringent requirements beyond the scope of the
work published so far. For example, the collision avoidance constraints must be satisfied
exactly at all times, the convergence to the desired end-point must not be too slow, and
the accelerations required to follow the desired paths must be within the capabilities of

the actuation hardware.

It will be very desirable to have the formation reconfiguration planning take place
autonomously. One simple approach is to imﬁlement reconfiguration strategies which
move the formation spacecraft one at a time, thereby significantly reducing the
complexity of the path-planning problem. The problem is then of avoiding collisions
between a single moving spacecraft and fixed hazards (the other spacecraft on the scene
which are constrained to remain stationary). Such a scheme, although relatively less
complex from a collision-avoidance path-planning standpoint, can be shown to be sub
optimal from the standpoint of time, fuel, and energy expenditures. As an alternative, the
ground operators can explicitly plan the translations of each spacecraft subject to
collision avoidance constraints and appropriate optimality criteria. The desired
spacecraft-spacecraft path can be parameterized as coefficients of Chebyshev

polynomials (time-series), for example. The appropriate coefficient set can then be



transmitted to the formation where it is executed in real-time. This approach is labor
intensive and becomes increasingly difficult to manage as the number of spacecraft in the

formation increases.

2. Problem Formulation

The optimal collision-avoidance problem posed here is formulated as a parameter
optimization problem where the translation paths taken by each spacecraft are
parameterized as splines. The choice of this parameterization yields feasible paths which
satisfy only the appropriate boundary conditions. Subsequently We propose an iterative
algorithm to solve the resulting parameter optimization problem whose size is
proportional to the number of spacecraft in the formation. We show that the solution
approach can be made to terminate in a fixed, user-specified number of iterations for the
relatively simple case of a two spacecraft formation (the ST-3 case). The maneuver time
is another parameter in the optimization and it is computed so that the control required to
follow the ‘optimal” path does not exceed the maneuvering capabilities of any spacecraft
in the formation. We note that, although it must happen on-board, the optimal path-
planning problem does not require a solution in real-time. The proposed algorithm can
be programmed to execute a little ahead of time, in anticipation of the impending

reconfiguration maneuver.

We shall assign a spacecraft in the formation the role of the reference spacecraft. This is
the spacecraft where formation reconfiguration path planning will actually take place in a
real system. Any spacecraft in the formation may serve this role. The positions of all
other spacecraft in the formation will be defined with respect to the reference spacecraft.

There are a total of N spacecraft in the entire formation and the reference spacecraft will
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Figure 1. Formation of N Spacecraft

be referred to as the spacecraft N. For the purpose of prescribing collision avoidance
constraints, we shall define an exclusion sphere of radius Ry about the spacecraft k.
Enforcement of the collision avoidance constraint would require that any two exclusion
spheres do not intersect (a point of contact is allowed, however). Let x; denote the linear
position vector of spacecraft k with respect to the reference spacecraft in inertial
coordinates (see Figure 1), k=1, 2, .., N-1; vi be the time derivative of x, k=1, 2, .., N-
1; and ay denote the absolute linear acceleration of spacecraft k, k=1, 2, .., N. By
absolute acceleration we mean the acceleration with respect to an inertial frame, i.e. the
acceleration sensed by an accelerometer. Note that aj is not the time derivative of vy,
rather it is the sum of the time derivative of vy and ay;, the absolute linear acceleration of
the reference spacecraft. Furthermore we will use T to denote the reconfiguration
maneuver time, a ‘®’ to imply the vector cross product operator, and a ‘e’ to denote the
vector scalar product operator. The following assumptions are made to facilitate the

analysis described here:

1. The formation reconfiguration maneuvers being considered are of the rest-to-rest
variety, i.e. vi(t) = 0, k =1, 2, ., N-1, at t = 0, t = T. Almost all formation
reconfigurations for interferometry applications belong to this class. The one which

does not is the so-called imaging-on-the-fly mode, where a synchronized rotation of

the formation as a single monolithic unit is required. Avoiding collisions is not a



concern in this case since the specific maneuver places additional constraints on the

motion, which preclude collisions.

2. The natural orbital perturbations on system relative equations of motion are small
enough to be ignored. This is a realistic assumption for the deep-space formation
flying application under consideration here. Orbital dynamics induced relative
motion accelerations are several orders of magnitude below the path accelerations
during formation reconfigurations. The assumption renders the equations of motion

linear.

3. Spacecraft rotational degrees of freedom are ignored. This is not at all restricting
from a practical application standpoint. The assumption simply requires that either a
prescribed fraction of the total acceleration capability be used for collision avoidance
path-planning (the balance reserved for attitude planning) or that a momentum

exchange device be used for attitude control.

2.1. Statement of the Problem

The formation equations of motion may be stated as:

K ) = vilb), k=1,2,..,N-1, (1)
) = at) - an(), k=1,2,...,N-1, @)
(0 = x¥, x(D) =xg, k=1,2,..,N-1, 3)
vi0) = 0, vi(T) =0. k=1,2,...,N-1. (4)

Note the rest-to-rest boundary conditions (4). We wish to find suitable accelerations
a(t), t € [0,T], k=1, 2, ..., N, such that the sum of total energy expended is minimized,

i.e. we wish to minimize:
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Collision avoidance constraints may be stated as the following constraints on relative

positions (boundary conditions (3) are assumed to satisfy these):

X0~ X0} (x0 - 50 2 ®Re+RY?, kj =12, N-1; k=j; te [0,T], (6)

X(t) ® X (1) = Ry + Ryy)?, k=1,2,.,N-1; t e [0,T]. (7)

Furthermore, actuation limitation on each spacecraft places additional restrictions on the

path accelerations. These may be generally stated as follows:
() € Ay, k=1,2,.,N; te[0,T].

This constraint may take many forms in practical applications, e.g. a constraint may be
imposed on the 2-norm of the vectors 1n question, i.e. we may require |ja(t)|lr < Ay
where 4| is some prescribed scalar. It is more common and appropriate, however, to
place limitations on the absolute values of acceleration components. If we express the
acceleration vector ay as {akx, aky, akz}, then we require: | aki(t) | < Aki’ 1i=x,y,2,k=1,
2, .., N. Although the solution proposed here can handle a general acceleration bound,
we shall, for the sake of problem definition, assume a ‘box’ type bound here. Therefore,

in addition to (6) and (7), we also require satisfaction of the following constraint:
| aki(t) | < Aki’ 1=X,Y, 2z k=1,2,.,N; te][0,T] (8)

The optimal collision avoidance problem is therefore that of evaluating appropriate path

accelerations ay(t) such that (5) is minimized subject to (1-4) and (6-8).



Define a dimensionless time variable £ = t/T. Using a ()’ to denote a differentiation with

respect to &, we are able to express (1-5) as follows:

x (&) = Twv(&), k=1,2,...,N-1, (1a)

Vi@ = T{ad)-an®}, k=1,2,...,N-1, (2a)

w0 = xP, x(D) =x], k=1,2,...,N-1, (3a)

i) = 0,  w(l) =0, k=1,2,...,N-1, (4)
N 1

J = %L | {a®ea®)}dd | (52)

k=1 ¢

We shall treat the reconfiguration duration T as a parameter to be used aposteriori to
enforce (8). We shall ignore (8) for the time being and, later, choose an appropriate T so
that (8) is satisfied. In order to do so we shall exploit the following relationship, which

follows from (1a), (2a):
a(® = an@ xS/ T : ©
Optimal accelerations minimize the Hamiltonian:

N N-1
H =T [l/zk;] @ 2 2@} + T o) * vi®) + a®) ¢ a(d)- an(@)] ]+

N-1
% 2 [ (00 3@ - RR? ) +

N~

T @ [ @) ¢ xi®x9) - RerR21], (10)

~

~
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where py(S) and qi(€) are the co-states associated with the states xi(&) and vi(&),
respectively, and Ap(§) and kkj(i) are the Lagrange multipliers associated with the

collision avoidance constraints. Minimization of the Hamiltonian leads to:

N—-{

an(&) = X qlb), (11)
k=1

(%) = -qx(&), k=1,2, ..,N-L (12)

Derivation of Euler-Lagrange equations is straightforward; we obtain for k=1, 2,.., N-1:

N-1
P = - A& x(®) - ;1 M) x8) - x,8)}, (13)
Ik
W@ = -pe), (14)
M) = 0, when x(€) @ x(8) = (RiHRy)2, (15)
Mg€ = 0, when {xx(&)-x(8)} o {x(&)x;(E)} = (ReR))2. (16)

In the absence of restriction (8), equations (la-4a), (6-7), and (11-16) form the necessary
and sufficient conditions for optimality. Elimination of the co-state qi between equations

(11) and (12) leads to:

N—-1
@ = - Ia® el

which implies that the sum of all optimal accelerations, i.e. the net formation acceleration
for an optimal maneuver, is zero at all times. We may therefore state the following

property about optimal maneuver accelerations ay*:

M=

x*@E =0, ¢ e[0,1]. (17)
k=1



Using (9) and (17), optimal accelerations can be expressed as the following sums of

derivatives of relative positions x;(&):

1 [ N-1 1 N-/
a(s) = | N X ;1 X"(&) ] k=1,2, ... N-1, (18)
' Tk
© L[ L% "(&)] (19)
a = — | -— X :
N T2 | N2 K

2.2. Solution Approach

Without loss of generality, we may express the optimal solution trajectory, i.e. the

evolution of xy, as follows:

X*E) = bro(®) XY + by (8) Xy +bia(®) {xp ®xF} k=1,2,.,N-, (20)

where by;(£), 1= 0, 1, 2, are continuously differentiable scalar functions of £. In instances
where the vector ( xﬁ@ XE) does not exist, we propose to use nj, any vector orthogonal
to xg , in place of XE in (20). Therefore we shall proceed with the representation (20) in
the sequel with the assumption that the direction ( xﬁ@ XE) 1s defined. Satisfaction of
system boundary conditions (3a, 4a) imposes the following constraints on the boundary

values of the functions by;,1=0,1,2; k=1, 2, .., N-1:

bo) = L b = 0, b(O= 0, b= 0, (21a)
b)) = 0, by =1, by’ ®= 0, b= 0, (21b)
b = 0, b)) =0, bu(O= 0, byd)= 0. (21c)

A similar set can be proposed when xg® xg does not exist. Representative graphs of

these functions (we will refer to them as the Path Functions) are shown in Figure 2.
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Figure 2. Representative Graphs of Path Functions
We make the following assertions about the chosen representation (20,21):
1. It defines a feasible path, i.e. a path which satisfies the boundary conditions.

2. It does not restrict the optimal paths in any way — equivalent to the most general

representation possible.

3. Functions by, by determine thé path in the plane spanned by the trajectory end

points. Function by, determines the out-of-plane motion component.

4. Tt is trivial to place additional constraints on optimal paths, e.g. it may be desirable to
further restrict optimal paths such that they lie in the plane spanned by the two end
points. This is accomplished by setting by, = 0. This is the case for the TPF mission,
for example, where reconfiguration maneuvering when the spacecraft are in close
proximity of one another must be constrained in this fashion to ensure thermal

protection of sensitive optics elements.

5. The optimization problem can now be re-stated as the problem of determining the

optimal set {byg, byy, byo}, k=1,2, ..., N-1.

Let by define the set {byg, by, byp}, which is a function of € in general. Many such sets

exist but only one will satisfy the collision avoidance and minimum energy conditions.

11



Next, we parameterize the set by as a polynomial expansion in £ with undetermined
coefficients. The solutions of these undetermined coefficients will then provide the
optimal or sub-optimal solution to the problem. Again, there are many choices to be
made here. We have chosen the following polynomial series in & in the sequel, i.e.

b= > i s (22)

j=0

where Ckij» k=1,2,.,N-1;1i=0,1,2;5=0, 1, .., n, are the undetermined coefficients.
This specific choice is based primarily on the observation that the optimal solution of the
constraint-free (no collision-avoidance constraiﬁts) optimal path-planning problem
belongs to the class of solutions (22) where Chij = 0;k=1,2,.,N-1;1=0,1, 2;] > 4.
Enforcement of the boundary conditions (3a, 4a) results in the following expressions for

the elements of set by:

1-382+28%+ 3

4[ {G-3) 8- G2+ borg ), k=1,2,.,N-1, (23a)
j— .

byo

by =382-283+ 3 [((DE-(DE+E oyl k=12, N1, (23b)
j=4

by = _§4 [{G-3)E%-(G-2) &+ } oy 1. k=1,2,.,N-1. (23c)
j=
There are no linear terms in & and the coefficients of the quadratic and cubic terms
depend on the coefficients of the remaining terms. In general, for an n'® order expansion
(22), there will exist 3(N-1)(n-3) undetermined coefficients. The number of collision-
avoidance constraints to be satisfied are N(N-1)/2. Therefore, for an over-parameterized
system, we require that n, the order of expansion in (22), be greater than 3+N/6. For

example, a 61 order expansion for Path Functions leads to an over-parameterized system

12



when N < 18, i.e. formations of at most 17 spacecraft. In the case of the ST-3 (N = 2)
and TPF (N = 5) missions, the system will be over-parameterized for n > 4. The solution
methodology proposed here is not a function of n. However, the number of computations

required to reach a solution is dependent on n.

It can be shown that the optimal trajectory of the solution to the (trivial) problem of
obtaining minimum energy trajectories where collision avoidance consideration is absent,
is given by (23a,b,c) where cy;j=0;1=0, 1, 2;j> 3. The optimal path in this case is a

cubic (spline) function of time which lies in the plane spanned by the end points:
x (% = {1-3@D2+2@UT)* ) xp +{3WD?-2WT)°}x{. (24)

The associated optimal acceleration is a linear function of time. Note that the optimal
solution to the constraint-free optimal path-planning case belongs to the class of solutions
being considered here. It is also obvious that consideration of the collision avoidance
constraints would require inclusion of at least one more term in the power series (22).
Another motivation behind the time-series representation is to obtain, if possible, an
analytic solution to the problem. While it is possible to express the functional (5a)
analytically in terms of undetermined coefficients, derivation of an expression for
Minimum | x(8) — x;(8) | is very tedious. Numerical methods are therefore resorted to in

¢el0,1]
the implementation.

13



2.3. Numerical Algorithm

Let ¢ denote the set of undetermined coefficients:
c = {c}, k=1,2,3,.,N-1, (25)

where ¢ = { Cro4> Ck14> Ck24»  Ck05> k15> Ck25> - » ClkOnm» Ckin» Ck2n J- 1he optimal

collision avoidance guidance problem has been reduced to the problem of determination
of an appropriate ¢ which minimizes J/T (where J is given by (5a)) while satisfying (6)
and (7). Rather than minimizing J, we minimize J/T so as to completely remove the
dependency on maneuver duration time. A suitable value for T will be chosen a
posteriori so that (8) is also satisfied. The resulting problem is a non-convex
optimization problem (the cost is a convex function of ¢ but the constraints are not). The
solution approach proposed here is nurﬁerical. Although it is difficult, if not impossible,
to make any claims about the convergence and nature of solutions to such problems, the
proposed approach is based on arguments induced by geometry and has not been found to

fail yet in our applications. Define the minimum separation between the two spacecraft

as follows:
d = Minimum || x(8) - %;(8) I, k,j=1,2, .,N-1; j=k, (26a)
¢el0,1]
de = Minimum || Xk((:) Hz, k=1,2,.., N-1, (26b)
¢ef01]

and let the following define the gradients of the cost J and minimum separations dy; with

respect to ¢:

V] = (U/T)élléc, (27)

14



Vdy;

Ody j/dc, k=1,2, ,N-1;j=1,2, ., N; j=k. (28)

The algorithm proceeds as follows:

Initialize: Set c* = {0}. c* denotes the optimal value of the set c. It is the initial estimate

Step 2:

of c. Recall that ¢ = {0} is the solution to the un-constrained problem.

Set ¢ = c*, and compute dyj; Exit if all minimum separations are larger than
the separation required to avoid collisions. No further evaluations are needed.

Therefore exit if:

dyi2

72 Re+RYS k=1,2, L N-1I;j=1,2,.,N; j=k (29)

If at least one dy; fails to satisfy (29), numerically evaluate VJ, Vdy; at c*.

This requires a ﬁnife number of evaluations, the number of which increases as
the order of the expansion (22) is increased. Note that numerical integration
of equations of métion is not required for evaluation of either J/T or dy;,
however. J and xj can be expressed in closed forms (functions of c).

Evaluation of gradients requires discrete approximations.

Once the gradients are available, we determine the direction ¢ in which the
vector ¢ must be changed. Using geometry-based arguments, a most obvious
direction is the one which most nearly lies in the plane orthogonal to VJ and
also yields the maximum possible change in separations. Since there may
possibly be several inter-spacecraft separations requiring an improvement, a
weighted linear combination of the gradients of all offending dy;’s 1s formed.

The weights used are simply (Ry + Rj)2 - dka, in other words, the extent of

15



Step 4:

violation. Other weights might also be used here. The resulting gradient is

therefore:

Vd = I {(Re+R)-di’} Ve ],

where only the offending Vdy;’s figure in the sum. The appropriate direction

o is required to satisfy the following conditions:

Viec

IA

0,

Vdec > 0.
A solution to (30) can be expressed as:

G = Vd-(VIeVd)VJI/(VJeV]).

(30a)

(30b)

(1)

In instances where VJ and Vd are nearly collinear, we choose a direction

which perturbs ¢ along Vd. Also, in instances where VJ e Vd < 0, we choose

a direction along Vd. Therefore:

c = Vd-(VIieVd)V]/(VIieV]), when V] e Vd > 0, (32a)
= Vd, when V] e Vd <0, (32b)
= Vd, when Unit(V]) o Unit(Vd) ~ 1, (32c¢)

where Unit(.) is the unit vector along the vector argument.

The solution ¢ is updated along c:

ct = ¢+ 6{5d/(6eVd)},

(33)

16



where G is the unit vector along &, and dd is the required improvement in
along Vd, a user-specified parameter. The update equation (33) is motivated
by the two spacecraft case, where there is only one constraint equation. Let d,
be the minimum inter-spacecraft separation in this case. Therefore, if ¢ is
perturbed by p &, where p is some scalar and we would like to effect a change
&d in d,, then the change in d; can be expressed as: p G e Vd ~ 8d, which

leadsto: p=56d/( 6 Vd).
Step 5:  Setc* =c™, and return to Step /.

Once a solution has been obtained, we turn our attention to the satisfaction of (8), the

constraints which place limitations on individual spacecraft accelerations. Note that the

evaluation of cost J in Step 2 also requires analytical evaluations of accelerations aj at

each iteration. Therefore, an estimate of Aga)%n]um | a;(8) |, 1=X, ¥, 2, is also available
S

upon exit from the iterative algorithm. Accelerations vary as 1/T? (see (18), (19)). Itis

trivial to choose an appropriate maneuver duration T such that none of the acceleration

components exceed Ay, At least one of the acceleration components | ay, | is therefore

equal to Aki, it’s prescribed limit.

Once the undetermined coefficient set ¢ has been obtained, the ‘optimal’ solution is
trivial to implement. It requires substituting the numerically derived coefficient set ¢ in
(22) to obtain the desired Path Functions {by; k =1, 2, .., N-1} as a function of time.
Path Functions are then substituted in (20) to obtain the relative position as an explicit
function of time, which can be analytically differentiated once to obtain the required
relative velocities and twice to obtain relative accelerations. The relative accelerations

are substituted in (18) and (19) to compute the required absolute accelerations. The

17



relative position, relative velocity, and the absolute accelerations are all analytic

functions of ¢.

3. Numerical Examples

Two specific formation-flying examples are presented next. The numerical values
chosen here are for illustrative purposes only, they are not representative of the ST-3 or

the TPF missions.

Example 1: Two Spacecraft Formation

We will assume the same avoidance radius for both spacecraft, i.e. Rf = Ry =R =4 m.

The boundary conditions are:

X = [10 2 0] m,

0
1
x{ = [[10 2 10]m,

and the appropriate acceleration limits to be observed in this case are:

Ay [0.005 0.004 0.003] m/s?.

[0.004 0.003 0.005] m/s?,

A;

We will initially limit ourselves to a 4th order polynomial expansion. The undetermined
coefficient set in this case is: ¢ = { Cyg4> C114> C124 ;- Minimum spacecraft-spacecraft
separation must not be less than Ry + R; = 2 R = 8 m to satisfy the collision avoidance
constraint. The trajectories for ¢ = {0} are found to violate the collision avoidance
constraint (4.49 m minimum separation for ¢ = {0}). The numerical algorithm provides

the following solutions:

18



c* = { 8.1481, 4.8381, -8.4495x10°6 },

T =162 sec.

Note that although the no-out-of-plane-motion constraint (cy,4 = 0) was not enforced,
out-of-plane motions were not needed ( cip4 = -8.4495x10® ). Time histories (the
parameter £ = t/T) of spacecraft-spacecraft separation and the cost functional are shown
below in Figure 3. The time histories for the unconstrained case (R = 0) are shown as the
‘dashed’ lines. Satisfaction of collision avoidance and maximum acceleration constraints

3 , unconstrained cost =

requires 45% more energy (constrained cost = 5.23x107* m%/s
3.64x10™ mz/s3). Figure 4 depicts the time histories of x| and a;. Recall that a; is the
required acceleration on spacecraft 1. Figure 5 depicts the variations in the reference

spacecraft acceleration. As before, dashed lines are used to depict the variations for the

unconstrained case (R ="‘ 0).

‘T = 162 sec

16 j ! T ! 6 T T T
g14_ By AsL . /
a . f/ 2 : ; 5 /
312 D S - A ]
5 RETN 3 T //
3 ' / 8 R=4 i
8.10 \\ SR A 1 .23- —\/,
2 R / ,, i "6’ : /‘/ ,«'/
= v g ’ 4
pat St Lo s 2 E // :

8 8 =] / I T
3) " K
8 N ’." 8 ,//“’ N‘R: 0
6 —— 1pfr
t%. \\“ R— R=0 /
4 L R 0 . i i i
o 2 4 6 8 1 0 2 4 6 8 1

Non-Dimensional Time 8 Non-Dimensional Time s

Figure 3. Separation and cost time histories
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the two spacecraft. Note that only the z component of a;(§) is at it’s maximum prescribed

value (0.003 m/s? @ & =0), and hence is the one responsible for the selection of T.
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Next, we explore the effects of inclusion of additional terms in the expansion (inclusion
of the 5™ and 6™ order terms). The effects of additional terms on ‘optimal’ spacecraft
separations and cost functional are shown in figure 6. No definitive improvement is

noticed when higher order expansions are employed. Total maneuver cost actually

T = 162 sec -4

=
2]

[ea)
1

= =
N [N
Y
l\n
finy w
.
i

w
T

[o0]

Cost Functional (mz/sa)
[\S]

Spacecraft Separations (m)
o
[

[ea]
1

4 L ; 0 . ; [
0 .2 .4 .6 .8 1 0 .2 .4 .6 .8 1
Non-Dimensional Time s Non-Dimensional Time s

Figure 6. Separations and cost for 4th, 5th and 6th order expansions

increases slightly for the 6% order case. ‘Optimal’ coefficient sets for the 4t order and
5% order expansions are as follows:

C*n=5] = {3.7046, 1.9838, 1.7231x107, 1.8422, 11629, -2.7215x1077},

C*m—g = { 1.2156,0.5748, 6.4732x10°8, 1.6500, 0.8016, -2.5587x107,

0.7758, 0.4342, -2.3716x10°8 }.

Out-of-plane motions are not required in any case. As further illustrations of the solution

for ‘optimal’ paths and dependence of cost functional and the collision avoidance
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constraint on the coefficient set ¢, consider the case where ¢ = { c{p4, {14, C124 }, 1,&, the
case of the 40 order expansion. Here ¢4 turned out to be very nearly 0, therefore we
shall consider the dependence of cost and constraint surfaces on coefficients cjp4 and

ci14- The figure below makes this dependence explicit. The cost is expressed in units of

Cost cm’/s’ Minimum Sep m

e, -10 -10 ¢,

Minimum Sep m

Figure 7. Dependence of cost and minimum separation distance on

undetermined coefficients for the case of a 41 order expansion

cm?/s® in figure 7. Note that the cost functional is convex but the constraint surface is
clearly not. The two figures at the bottom are contour plots of the respective surface at
the top, i.e. they represent level cross sections of the two plots on the top. The ‘heights’
at which the cross-sections are made are noted on the plots at the bottom. The region of
interest, in the cqg4-C114 plane, in the plot at the bottom right in Figure 7, is of course the
hatched area represented by minimum separation > 8 m, which is near the top-right

comer of the plot. A superposition of the two contour plots is shown in Figure 8. Also
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Figure-8. Search for the optimal solution in the plane of

undetermined coefficients.

shown is the path taken by the algorithm in search of the minimum. The search start at
(0,0) and terminates at the ‘optimal’ solution (cq4, €114) = (8.1481, 4.8381) on the 8 m

minimum separation contour.

Example 2. Five Spacecraft Formation

Next we consider the case of a formation with 5 spacecraft. There are 10 collision
avoidance constraints to be satisfied in this case. We shall assume the same avoidance
radius for all spacecraft: Ry =10m, k=1, 2, .., 5. This would require that all spacecraft-
spacecraft separations be greater than 20 m. The boundary conditions to be satisfied in

this instance are:
x1(0) = [ 22254 -36.706 17.052 ]m,
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X9(0) = [ 22254  -14.518 2.2605 ]m,

x30) = [ 22254  7.6703 -12.532 1 m,
x40) = [ 22254  29.8580 -27.324 Im,
x((T) = [ -38.545 -13.285 -21.705 ] m,
x(T) = [ -25.697  3.9533 -5.9300 ] m,
x3(T) = [ -12.848  21.192 9.8453 1m,
xgT) = [ 0000 38431 25.621 Im,

and the appropriate acceleration limits to be observed in this case are:

Ay [0.005 0.004 0.003]m/s®, k=1,2,3,4,

]

As [0.004 0.003 0.005] m/s.

Assuming a 41 order expansion for paths, we obtain the following solution for the

undetermined coefficients:

{C104 €114» €124} = { 3.7976, 4.0480, 0.6680},
{C204> €214 C224} = { 19.448, 19.394, 2.6337},
{0304, C314» C324} = { 30534, 20985, -23686},

{0404, C414> 0424} = { 13019, 06078, -04503}

All initial position vectors lie in a plane, as do all terminal positions. But the plane of
initial positions is different from the plane spanned by the terminal positions.
Consequently out of plane motion is required for all relative motions (the 3™ coefficient
1s non-zero in all cases). The maneuver required 316 s for completion in this case.
Maneuver duration is dictated by the z component of a4, the acceleration of the 4th

spacecraft. The spacecraft-to-spacecraft separations and cost functional are plotted vs.
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Figure 9. Variations in inter-spacecraft separations and maneuver cost.

non-dimensional time & in Figure 9. Unconstrained time histories appear as dashed lines.

There are 10 inter-spacecraft separations and four of them come close to the required 20

m threshold. Satisfaction of all constraints requires 80% more energy. Time histories of

T = 316 sec
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Figure 9a. Variations in x; and a,
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x| and a; are depicted in Figure 9a, x, and a, are shown in Figure 9b, x5 and as are

shown in Figure 9¢c, x4 and a4 are shown in Figure 9d, and as, the acceleration required

by the reference spacecraft, is shown in Figure 9e.
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Figure 9c. Variations in x3 and a3
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4. Conclusions

The problem of minimum energy collision avoidance for formation flying applications is
considered and a solution in presented. The minimum energy expended is the chosen
metric. It is closely related to the total fuel expended. The proposed methodology looks
for sub-optimal solutions which are easier to implement and more attracﬁve from the
standpoint of real-time implementations. The solution is sub-optimal since it tries to
locally minimize the appropriate cost-functional within the class of paths under

consideration.

It appears that, within the class of proposed solutions, consideration of only the first
significant term in the time-series approximation yields a solution with the lowest cost. It

is also computationally least intensive.

It is possible to include additional constraints on relative velocities. Such inequalities can
be handled in the manner the acceleration constraint is accommodated here. Also, other

metrics can be considered within the same class of solutions.
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